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Abstract—Air traffic management and airspace management
reduce air traffic congestion to maintain safety. Managing traffic
induces costs on airspace users and managing airspace causes
additional work for air traffic controllers. This paper prop oses
and simulates algorithms for tactically reducing airspacecon-
gestion with coordinated air traffic and airspace management.
A modified version of the Projective Cone Scheduling algorithm
performs tactical air traffic management. An algorithm based
on approximate dynamic programming accomplishes tactical
airspace management. Three types of coordination between these
air traffic and airspace management algorithms are investigated.
Monte Carlo simulations of a simple problem instance involving
severe congestion indicate that increased coordination between
air traffic and airspace management can lead to lower costs with
no increase in algorithm computation time.

I. I NTRODUCTION

Congested airspace contains more aircraft than can be safely
and efficiently controlled by air traffic controllers. Congestion
can be reduced by managing air traffic or airspace.Traffic
Management Unitstactically manage air traffic by delaying or
rerouting flights to reduce congestion over the next hour. These
delays or reroutes are costly for airspace users. Managing
airspace, on the other hand, involves altering how respon-
sibility for controlling aircraft is divided among controllers.
Controller supervisors accomplish tactical airspace manage-
ment by selecting sets of airspace volumes calledsectorsto be
controlled by each controller team. Changes in the assignment
of sectors to controller teams disrupt controller activities
and can degrade safety and efficiency. Traffic Management
Units and controller supervisors coordinate how to use air
traffic and airspace management to reduce congestion. Since
congestion, traffic management, and airspace management all
induce difficulties for controllers or costs for airspace users, it
is not always clear if or how traffic and airspace management
should work together to reduce congestion.

Procedures, tools, and algorithms have been proposed to
assist with tactical air traffic and airspace management. A
person called aMulti-Sector Plannercould coordinate local
traffic and airspace management [1]. Procedures for human
decision-makers to tactically coordinate air traffic and airspace
management while using algorithm-suggested alterations to
sector geometries have been investigated in recent human-in-
the-loop simulations [2]. TheAirspace Restriction Planneris
a tool that proposes and evaluates possible air traffic man-

agement actions by solving an integer program [3], [4]. More
recently, theMaxWeightalgorithm from queuing theory has
been applied to tactical air traffic management [5]. For tactical
airspace management, algorithms based on myopic heuristics,
integer programming, and dynamic programming have been
proposed [6]–[8]. Some research has investigated the coor-
dination of air traffic and airspace management for strategic
time horizons of an hour or more [9]–[11]. However, most
air traffic management algorithms assume that airspace will
be held constant, and most airspace management algorithms
do not consider how delayed or rerouted traffic will impact
airspace quality. Furthermore, no publications have studied
algorithms for coordinated air traffic and airspace management
in the tactical timeframe of an hour or less.

This paper is a preliminary investigation of algorithms for
coordinated tactical air traffic and airspace management. These
algorithms suggest air traffic and airspace controls to reduce
congestion in a way that considers the cost of congestion,
traffic management, and airspace management. The algorithms
incorporate various degrees of coordination between air traffic
and airspace management.

The model and the problem statement are in Section II. Al-
gorithms for solving this problem are specified in Section III.
The experimental setup in Section IV is followed by the results
in Section V. Opportunities for future work are discussed in
Section VII before the conclusion in Section VI.

II. PROBLEM STATEMENT

A. Air Traffic and Airspace Model

A queuing network is used to model air traffic and airspace.
Despite the simplicity of queuing models, they have proven
proven themselves to be relatively accurate representations
of air traffic [12]–[14]. They also allow powerful controlled
queuing techniques to be leveraged. While it is not trivial
to translate control actions proposed by such techniques into
implementable directives to aircraft [15], controlled queuing
algorithms show promise for air traffic management [5], [16].

For this study, air traffic is modeled with an Eulerian
queuing model. Each queue represents aircraft with particular
characteristics (such as the same destination airport) traversing
part of the National Airspace System (such as a sector).
Sectors are the atomic units of airspace and the sector con-
figuration in use at each time step specifies how sectors and



their associated queues are grouped intocontrol positions. A
control position is a set of sectors that are managed by a team
of air traffic controllers.

1) State: Time is discretized into time steps of lengthT .
The system stateX (k) = (Q(k), C(k)) at a time stepk
consists of the number of aircraft in each queueQ(k) and the
sector configurationC(k). More precisely,Q(k) is a vector
in which an elementQij(k) denotes the number of aircraft
passing between boundaryi and boundaryj at timekT . These
boundaries can represent any location where traffic may be
rerouted or delayed. Separate queues could be defined for
flights bound for different destinations. The configurationstate
at time kT is C(k), a set of control positions. Each control
position c is itself a set that contains one or more of theN

sectors in the set of sectorsS.
2) Control: The control action at each time step also has

two parts. The air traffic control implemented between time
kT and time(k + 1)T is U(k). This control is also a vector
with an element for each possible transition from one queue
to another. LetUijt(k) denote the number of aircraft in queue
Qij that are transitioned to queueQjt during time stepk. The
airspace control action selects the configuration for the next
time step. This action is denoted byu(k), and it is a set of
control positions that will be in place by time(k + 1)T . The
overall control action at time stepk is U(k) = (U(k), u(k)).

3) Dynamics:The system dynamics for the air traffic state
depend on the dynamics of the arrivals to each queue. Let
Aij(k) be the number of exogenous arrivals passing through
sector boundaryi from outside the system on the way to sector
boundaryj during time interval[kT, (k + 1)T ). Then the
dynamics of the number of aircraft in each queue areQij(k+
1) = Qij(k) + Aij(k) +

∑

s∈I(i) Usij(k) −
∑

t∈O(j) Uijt(k),
whereI(i) is the set of all sector boundaries preceding bound-
ary i, and O(j) is similarly the set of all sector boundaries
following boundary j. With an appropriateB matrix, the
dynamics of all the queues can be specified as

Q(k + 1) = Q(k) + BU(k) + A(k). (1)

The system dynamics for the airspace are simplyC(k+1) =
u(k). At each time step the configuration control specifies the
configuration for the next time step.

4) Constraints: Only those aircraft in each queueQij

that would, in the absence of any traffic control, cross
airspace boundaryj during time stepk (Dij(k)) can tran-
sition out of the queue. This is expressed by the inequality
∑

t∈O(j) Uijt(k) ≤ Dij(k) ∀ i, j, t, k. The vector version of
these constraints isC1U(k) ≤ D(k), whereC1 is a binary
matrix. The numbers of transitioning aircraft can only be non-
negative integers:U(k) ∈ ZnU

+ ∀ k, wherenU is the number
of elements in theU(k) vector. For this research, theDij(k)
values will be specified by a random process as in Ref. [5].
This random process is unique in that its expected value
increases as the number of aircraft in the queue increases, but
eventually saturates because of aircraft separation standards.

Rate constraints may also restrict the number of aircraft
that can cross a given sector boundary during a time step. Let

C2 be another binary matrix in which the1 entries in each
row identify the elements ofU(k) that must be added up to
determine the total number of aircraft transitioning across a
particular boundary. LetR be a column vector in which each
element expresses an upper bound on the number of aircraft
that can traverse the boundary affiliated with the corresponding
row of C2 during a time step. Then the vector inequality
capturing rate constraints isC2U(k) ≤ R.

A valid configuration assigns each sector to exactly one
control position, specifies only spatially contiguous control po-
sitions, and possibly meets other operational requirements [8].
Let C be the set of all valid configurations, and letCp be the
set of all valid configurations that containp control positions.
Due to staffing constraints, a prescribed number of control
positions must be used at each time step. Letd(k) specify the
time-varying number of control positions that must be used
at each time step. The configuration control must meet the
constraint thatu(k) ∈ Cd(k+1) (i.e. |u(k)| = d(k + 1)).

B. Coordinated Tactical Air Traffic and Airspace Management
Problem

The coordinated tactical air traffic and airspace management
problem (CTATAMP) is to find a control policy that minimizes
the expected value of a weighted sum of congestion, traffic
control, and airspace control costs over a finite time horizon,
subject to the system dynamics and constraints specified in
sub-section II-A. The CTATAMP is

minimize
π=(µ0,...,µK−1)

E

[

K−1
∑

k=0

g(X (k),U(k),X (k + 1))

∣

∣

∣

∣

∣

X (0)

]

(2)

subject toQ(k + 1) = Q(k) + BU(k) + A(k), (3)

k = 0, . . . , K − 1

C1U(k) ≤ D(k), k = 0, . . . , K − 1 (4)

C2U(k) ≤ R, k = 0, . . . , K − 1 (5)

U(k) ∈ ZnU

+ , k = 0, . . . , K − 1 (6)

C(k + 1) = u(k), k = 0, . . . , K − 1 (7)

u(k) ∈ Cd(k+1), k = 0, . . . , K − 1 (8)

X (0) = X0, (9)

whereπ is a feedback control policy in whichµ0, . . . , µK−1

indicate what control action to take at each time step, given
the state:U(k) = µk(X (k)). Therefore, the problem does not
require that open-loop control actions be specified for theK

time steps. Problem data include the distributions forA(k) and
D(k), the B, R, C1, andC2 matrices, the scheduled number
of control positionsd(k), the set of sectorsS, the sets of valid
configurationsCp, and a few other items required for the cost
function and described later.

The single time step cost function in the objective (2) is
a weighted sum of congestion, traffic control, and airspace



control costs:

g(X (k),U(k),X (k + 1)) = βcgc(X (k)) (10)

+ βtgt(Q(k), U(k))

+ βaga(X (k),U(k),X (k + 1)).

A cost function was designed to capture the most important
cost-inducing quantities in simple functional forms.

1) Congestion Cost:This cost penalizes instances when
control positions contain more than the maximum number
of aircraft that they can safely contain. Let̄Qc denote this
capacity value for a control positionc, and letQ̄C be a vector
containing the capacities for all the control positions inC.

The congestion cost depends on the airspace configuration.
The number of aircraft in a control position during a time step
is a sum of the number of aircraft in the queues corresponding
to sectors in that control position. LetEc be a binary row
vector with a 1 corresponding to each sector that is inc.
Similarly, let EC be a binary matrix with a row for each
control position inC. ThenECQ is a vector in which each
element contains the number of aircraft in the control positions
in C when the number of aircraft in each queue is as specified
in the vectorQ. The congestion cost is a sum of the number
of aircraft over the capacity in each control position:

gc(X (k)) = 1
T

[

EC(k)Q(k) − Q̄C(k)

]

+
. (11)

Here1 is a column vector of ones and[a]+ is equal toa when
a ≥ 0 and equal to0 otherwise.

2) Traffic Control Cost:The traffic control cost penalizes
airborne delay and reroutes. It is expressed as

gt(Q(k), U(k)) = 1
T (D(k) − C1U(k)) + fT U(k). (12)

The first term in this cost adds up all the flights that were able
to transition out of a queue but were instead delayed in the air.
The second term can impose a cost on rerouting flights. The
f vector contains non-negative elements that impose a cost on
control actions inU(k) that correspond to reroutes.

3) Airspace Control Cost:Finally, the airspace control cost
captures the operational cost of changing the airspace config-
uration. When the airspace configuration changes, controllers
must brief each other on the airspace that is moving from
one controller team to another, and the new team must gain
awareness of the air traffic situation in the new airspace.
During this approximately5-minute transition, operations in
the airspace may become inefficient and less safe. The airspace
control cost is

ga(X (k),U(k),X (k + 1)) =
∑

c∈C−

EcQ(k) +
∑

c∈C+

EcQ(k + 1).

(13)

The first term is the number of aircraft in control positions at
the start of time stepk that will not be used in the configuration
that will be implemented at the start of time stepk + 1 (the
setC−). The second term is the number of aircraft in control
positions at the start of time stepk + 1 that were not used
during time stepk (the setC+). These two terms approximate

the number of aircraft that are controlled during or discussed in
the briefing and handed off to another controller team duringa
transition, respectively, quantities shown in previous research
to be correlated with airspace transition workload [17]. Itis
possible to change configurations at any time step, but this
cost incentivizes keeping the configuration constant.

III. A LGORITHMS

Some algorithms for solving the CTATAMP are developed
by connecting a traffic control algorithm with an airspace
control algorithm.

A. Traffic Control Algorithms

1) Null Traffic Control: One baseline option for traffic
control is to not interfere with flights as they traverse the
airspace, leaving any congestion problems to be solved by
airspace control. This option consists of always selecting
actions that myopically minimize the traffic control cost:

Φ0(Q(k)) ∈ argmin
U∈U(k)

gt(Q(k), U), (14)

whereU(k) is the set of traffic control vectors that satisfy
constraints (4)–(6).

2) Projective Cone Scheduling Traffic Control:TheProjec-
tive Cone Scheduling(PCS) algorithm maximizes throughput
and is computationally efficient [18]. It is a generalization of
the MaxWeight algorithm, which has been applied to tactical
air traffic management [5]. For this research, PCS is modified
to consider the impact of control actions on the number
of aircraft over a congestion threshold in control positions
rather than the total number of aircraft in single queues.
This modification is suitable for the CTATAMP because the
congestion cost only penalizes the number of aircraft over the
capacity in each control position. The modified PCS algorithm
is denoted byΦPCS(Q(k), u(k)) and is specified as follows.

1: Θ = argmin
U∈U(k)

〈∆(U, u(k), α(k)), Gu(k)Π(Q(k), u(k))〉

2: return U ∈ argmin
U∈Θ

gt(Q(k), U)

In this algorithmα(k) is the expected number of arrivals
in time step k. Furthermore,∆(U, u, α) and Π(Q, u) are
functions that outputp × 1 vectors, wherep is the number
of control positions inu.

Each element of the vector output by theΠ(Q, u) function
specifies, for a control position in airspace configurationu

when the queue state isQ, the number of aircraft above a
threshold that are in the control position:

Π(Q, u) = [EuQ − (Q̄u − ǫu)]+. (15)

Here ǫu is a nonnegativep × 1 vector with an entry for each
control position inu. If ǫc, the entry inǫu corresponding to
control positionc, is set to0, then the PCS algorithm selects
traffic control actions that reduce the aircraft inc when the
aircraft count inc is over Q̄c, the capacity ofc. Larger ǫc

values encourage the PCS algorithm to reduce the aircraft



count in c before the count reaches̄Qc. The value(Q̄c − ǫc)
will be referred to as thePCS congestion threshold.

The ∆(U, u, α) function is specified as

∆(U, u, α) = max{Eu(BU + α),−Π(Q, u)}. (16)

Each entry in the vector output by∆ specifies the amount that
traffic control actionU will increase the aircraft over capacity
in a control position, assumingα arrivals in this time step.

Finally, Gu(k) is a positive-definite symmetric matrix with
nonpositive off-diagonal elements that can be used to tune the
performance of the PCS algorithm [18].

From among the traffic control actions that minimize the
inner product, an action with a minimal traffic control cost is
selected by the modified PCS algorithm in step two.

B. Airspace Control Algorithms

1) Null Airspace Control: The null airspace controlΨ0

always uses a particular airspace configuration. When the
required number of control positions changes, this algorithm
selects a new airspace configuration that minimizes only the
current airspace control cost, assuming thatα aircraft arrive
in each queue in the current time step.

2) Approximate Dynamic Programming Airspace Control:
A second airspace control algorithm is based on the rollouts
technique for approximate dynamic programming (ADP) and
is an extension of the algorithm presented in Ref. [8]. This
algorithm will select an airspace configuration that minimizes
the certainty equivalent estimate of the sum of the current
stage cost and an approximation of the optimal cost-to-go:

ΨADP(X (k), Φ, Ψ) ∈ argmin
u∈Cd(k+1)

{g(X (k), (Φ, u),EX (k + 1))

+ J̃k+1(X (k + 1), Φ, Ψ)}. (17)

Here J̃k(X (k), Φ, Ψ) is a certainty equivalent estimate of the
expected optimal cost-to-go from stateX (k) at time step
k [19]. It is computed by simulating the system from time
stepk to k + L, usingΦ andΨ to make traffic and airspace
control decisions, respectively. In this simulation the arrivals
to the system in time stepk areα(k) andD(k) is set to its
expected value given the simulated queue state at time stepk.
The equation describing the approximate optimal cost-to-go is

J̃k(X (k), Φ, Ψ) =

k+L
∑

j=k

g(X̃ h(j), (Φ, Ψ), X̃ h(j + 1)), (18)

whereX̃ (j) is the value of the system state taken on at thejth

time step in the simulation. Any traffic and airspace control
algorithms can be used in the rollouts simulation. A variation
on this algorithm accepts a fourth input that specifies the traffic
control to be used when simulating time stepk.

C. Algorithms for the Coordinated Tactical Air Traffic and
Airspace Management Problem

1) Null Control: One algorithm that serves as a baseline
will not attempt to manage congestion with traffic or airspace
control. It uses the null airspace and null traffic control

algorithms to independently select air traffic and airspace
control actions.

2) Independent PCS Traffic Control and ADP Airspace
Control: A second algorithm will select traffic control actions
with PCS and airspace control actions with the ADP controller,
but without any coordination between the two. Most traffic
control and airspace control algorithms developed in previous
research do not explicitly consider the impact that they have on
one another. Traffic control actions will be selected according
to ΦPCS(Q(k), Ψ0) and and the airspace control will be
selected according toΨADP(X (k), Φ0, Ψ0).

3) Iterative PCS Traffic Control and ADP Airspace Control:
One way to address the issue of coordinating traffic and
airspace control is to use an iterative approach [9], [11]. Such
an iterative algorithm is specified as follows.

1: U0 = ΦPCS(Q, C)
2: u0 = ΨADP(X , Φ0, Ψ0, U0)
3: for i = 1 to Imax do
4: Ui = ΦPCS(Q, ui−1)
5: ui = ΨADP(X , Φ0, Ψ0, Ui)
6: gi = g(X , (Ui, ui), (Q + BUi + α, ui))
7: if |gi − gi−1| ≤ δ then
8: return U = (Ui, ui)
9: end if

10: end for
11: return U = (UImax, uImax)

Inputs to the iterative algorithm include the system state
X = (Q, C) and the expected number of arrivals in a time
step α. The algorithm outputs a traffic and airspace control
pair U . The δ parameter specifies how much the cost must
converge before a control is returned and theImax parameter
specifies the maximum number of iterations.

4) Coordinated PCS Traffic Control and ADP Airspace
Control: A final algorithm will be referred to as the coordi-
nated algorithm because it explicitly coordinates air traffic and
airspace control by having the ADP airspace control approxi-
mate costs-to-go with the same traffic control algorithm that is
used to control the system. It first selects an airspace control
action according tou(k) = ΨADP(X (k), ΦPCS, Ψ0). Then it se-
lects a traffic control according toU(k) = ΦPCS(Q(k), u(k)).

IV. EXPERIMENTAL SETUP

A simple problem instance is developed to illustrate some
of the characteristics of the proposed algorithms. These char-
acteristics are more pronounced when congestion is more
severe, so the problem involves severe congestion that would
probably only be encountered in the tactical time horizon if
some unforeseen weather induced a significant reduction in
capacity or change in traffic flows.

The traffic queues and sectors used for this simple problem
instance are shown in Fig. 1. There are ten queues handling
flows of traffic traveling right-to-left and left-to-right.The
dashed rectangles indicate how queues are grouped into the six
sectors that partition the airspace. TheD(k) random process



for each queue is an approximation of the process shown in
Fig. 2 of Ref. [5], except for queues1–4, which are assumed
to be twice as long as the other queues. TheirD(k) processes
are modified as described in Ref. [5].
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Fig. 1. The queueing network used in the simple problem instance.

Queues and flows at lower altitudes are shaded. The low-
altitude queues2, 4, 6, and8 lie below queues1, 3, 5 and10,
and 7 and 9, respectively. These six sectors can be assigned
to between three and five control positions in seven different
ways. The control position capacities̄Qc are set to10 for any
control position containing just one of the the four sectorswith
queues5 and10, 7 and9, 6, or 8. Control positions with two
or more of these sectors have a capacity of16. The capacity
is 18 for control positions with queues1 and2 or 3 and4, and
these sectors cannot be in control positions with other queues.

The arrival process to queues5–7 is binomial with10 trials
and a time-varying probability of success that is differentfor
each queue [20]. The expected arrival rate for each queue is
shown in Fig. 2, as is the required number of control positions.
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Fig. 2. The (a) expected arrival rate into each queue and (b) required number
of control positions at each time step.

The values of various problem and algorithm parameters
used in this instance are shown in Table I. The experiment was
simulated in MATLAB. All minimizations were conducted by
an exhaustive search over the set of feasible solutions.

V. EXPERIMENTAL RESULTS

Average cost results broken down by cost type can be
seen in the stacked bar chart in Fig. 3. The average total
cost achieved by the coordinated algorithm is18% and 9%

TABLE I
PROBLEM AND ALGORITHM PARAMETERS FOR SIMPLEPROBLEM

INSTANCE

Parameter Value
Monte Carlo simulations 100

T (time step duration in minutes) 10

K (time steps in problem instance) 108

N (number of sectors) 6

nU (dimension of traffic control vector) 12

βc (weight on congestion cost) 1

βt (weight on traffic control cost) 1

βa (weight on airspace control cost) 1/3

fi for queue7 to 10 and queue5 to 9 (reroute cost) 1/2

All other fi (reroute cost) 0
Gu (PCS weighting parameter matrix) I ∀ u ∈ C

ǫ (parameter vector in PCS congestion threshold) 0

L (ADP rollout simulation duration) 5

δ (iterative algorithm convergence threshold) 3

Imax (iterative algorithm maximum number of iterations) 5

lower than the costs achieved by the independent and iterative
algorithms. The coordinated algorithm also achieves lower
average congestion, traffic control, and airspace control costs
than the iterative or independent algorithms. Similarly, the
iterative algorithm achieves lower costs of all types than the
independent algorithm. These results suggest that increased
interaction and coordination between air traffic and airspace
control can lead to better performance.
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Fig. 3. Average weighted congestion, traffic control, and airspace control
costs achieved by each algorithm.

Each point in Fig. 4 represents a control position at a time
step during one sample Monte Carlo simulation. Dots in the
red region represent control positions that are over capacity.
The black vertical lines represent times where each algorithm
reconfigured the airspace. The coordinated algorithm reduces
the congestion with relatively few airspace reconfigurations.

As traffic arrival rates are decreased or control position
capacities increased, the costs achieved by the independent,
iterative, and coordinated algorithms converge.

The null algorithm takes0.02 seconds to compute a control
action on average. The independent and coordinated algo-
rithms take 0.4 seconds per time step, while the iterative
algorithm takes1 second per time step.

VI. CONCLUSION

A queuing network model of air traffic and airspace is
used to formulate the Coordinated Tactical Air Traffic and



(a) (b)

(c) (d)

Fig. 4. Aircraft over capacity for each control position at each time step
during one of the Monte Carlo simulations when using the (a) null, (b)
independent, (c) iterative, and (d) coordinated algorithms.

Airspace Management Problem (CTATAMP). This problem
involves selecting tactical air traffic delays and reroutesand
airspace sector configurations that reduce control position
congestion. Algorithms for this problem are proposed by
combining a traffic control algorithm based on Projective Cone
Scheduling and an airspace control algorithm based on approx-
imate dynamic programming. A new coordinated approach is
proposed in which traffic is controlled with the modified PCS
algorithm and the rollouts approximate dynamic programming
algorithm for airspace control uses the same modified PCS
traffic control as part of the heuristic that helps it approximate
optimal costs-to-go. In Monte Carlo simulations of a simple
problem instance, the coordinated algorithm achieves average
total costs that are18% and 9% lower than those achieved
by the independent and iterative algorithms, respectively, as
well as lower average congestion costs, traffic control costs,
and airspace control costs. The coordinated and independent
algorithms each compute solutions more than two times faster
than the iterative algorithm.

VII. F UTURE WORK

A major remaining challenge is to refine and tune the
cost function used in this research. The coordinated algorithm
should be run on a historical problem instance involving a
weather event and with weather and traffic prediction un-
certainties. Its performance should be compared to that of
historical air traffic and airspace control actions. The com-
putational efficiency of the modified PCS algorithm must
be improved. Finally, an effort should be made to prove
convergence, stability, or optimality results for the modified
PCS and coordinated algorithms.
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